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Estrogens are clearly carcinogenic in humans and rodents but the mechanisms by which these
hormones induce cancer are only partially understood. Stimulation of cell proliferation and gene

expression by binding to the estrogen receptor is one important mechanism in hormonal
carcinogenesis; however, estrogenicity is not sufficient to explain the carcinogenic activity of all
estrogens because some estrogens are not carcinogenic. Estrogens are nonmutagenic in many
assays but exhibit specific types of genotoxic activity under certain conditions. We have studied
extensively the mechanisms by which estrogens induce neoplastic transformation in a model in
vitro system and our findings are summarized in this review. 1 7[-Estradiol (E2) and diethylstilbestrol
(DES) and their metabolites induce morphological and neoplastic transformation of Syrian
hamster embryo (SHE) cells that express no measurable levels of estrogen receptor. Treatment
of the cells with E2 or DES fails to induce DNA damage, chromosome aberrations and gene

mutations in SHE cells but results in numerical chromosome aberrations (aneuploidy) that could
arise from microtubule disruption or disfunction of mitotic apparatus. Estrogen-induced genotoxicity
is detected in cells following treatment with estrogen metabolites or following exogenous

metabolic activation of estrogens. The estrogens induce DNA adduct formation that is detected by
32P-postlabeling. Both aneuploidy induction and DNA damage caused by DNA adduct formation
correlate with the estrogen-induced cell transformation and may be important in hormonal
carcinogenesis. We propose that multiple effects of estrogens acting together cause genetic
alterations leading to cell transformation. Environ Health Perspect 1 05(Suppl 3):619-624 (1997)
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Estrogen use has been associated with an
increased risk for breast cancer and
endometrial cancers in women (1-4).
Various natural and synthetic estrogens
also induce mammary, pituitary, cervical,
uterine, and renal tumors in rodents (4-5).
Diethylstilbestrol (DES), a synthetic estro-
gen, is well known to be carcinogenic to
humans (6). The cellular and molecular
mechanism(s) whereby estrogen-induced
neoplastic events occur have not been fully
elucidated, but there is strong evidence
that estrogens are epigenetic carcinogens,

acting via a promoting effect related to
cellular proliferation, mediated through the
estrogen receptor (7-15). However, it has
been shown that estrogenic activity is not
sufficient to explain the carcinogenic activ-
ity in vivo and in vitro under certain exper-
imental conditions. Another mechanism,
related to mutagenic changes, has been
suggested in studies of estrogen-induced
carcinogenesis (16-24).

The application of cell cultures to study
carcinogenic mechanisms of chemical/
physical carcinogens can provide insights
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into the cellular and molecular mecha-
nisms of carcinogenesis, which is difficult
in whole-animal or human systems. We
have used Syrian hamster embryo (SHE)
fibroblast cell cultures as a model system to
study the ability of estrogens to directly
transform cells.

Morphological and
Neoplastic Transformation
in Vitro by Estrogens and
Estrogenlike Chemicals
Morphological and neoplastic transfor-
mation of SHE cells is induced by DES,
17,-estradiol (E2) and other estrogens.
We observed that DES and E2 induce
transformation of hamster cells that is
indistinguishable from that induced by
other chemical carcinogens such as
benzo[a]pyrene (19,25). Sarcomas are also
induced in Syrian hamsters in vivo follow-
ing subcutaneous injection of DES (26).
SHE cells do not express measurable levels
of estrogen receptor and estrogen treat-
ment is not mitogenic to the cells (27).
Thus, estrogenic activity of the compounds
can be excluded in this in vitro assay. The
cells do, however, have the ability to
metabolize estrogens (28,29), and the role
of metabolic activation in the carcinogene-
sis activity of estrogens in this model is
under investigation as discussed later.

The role of mutagenesis in the neoplastic
transformation ofSHE cells by estrogens has
been studied extensively. We have demon-
strated that treatment of SHE cells with
DES or E2 induces cell transformation with-
out measurable gene mutations, unsched-
uled DNA synthesis (UDS) or structural
chromosome aberrations (19,20,23).
Under the same conditions, both estrogens
induce a specific type of genetic change,
i.e., aneuploidy. Chromosome losses and
gains are induced (20,23), suggesting a
nondisjunctional mechanism involved in
the transforming activity. Structural ana-
logues of DES have also been tested in
this cell transformation system (25,30).
Like DES, tetrafluorodiethylstilbestrol
(TF-DES) and dimethylstilbestrol (DMS)
induce morphological transformation of
SHE cells. The transformation frequency of
DMS is much less than that of DES and
TF-DES. Hexestrol (HEX) and dimethoxy-
diethylstilbestrol (DM-DES) do not trans-
form these cells. There is a good association
between the metabolic conversion of
DES analogues via a peroxidase-mediated
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oxidative pathway and their ability to
induce cell transformation. DES, DMS,
and TF-DES can all be metabolized by per-
oxidase. In contrast, HEX and DM-DES
are not metabolized via this pathway (25),
suggesting that DES metabolism is impor-
tant in its carcinogenicity. The peroxida-
tive-mediated metabolism of DES that
operates in SHE cells is also the major
pathway of DES metabolism in the known
DES target tissue [e.g., adult (31) or fetal
uterus (32)] (25).

Treatment of SHE cells with DES in
the presence of exogenous metabolic activa-
tion with rat liver postmitochondrial super-
natant (PMS) enhances morphological
transformation in a dose-dependent man-
ner (33). Exposure of SHE cells to DES
under the same conditions with exogenous
metabolic activation induces DNA damage
(determined by UDS) (21), and somatic
mutation at the Na+/K+-ATPase locus (33).
SHE cells peroxidatively metabolize DES to
cis,cis-dienestrol (J-dienestrol) (29), which
does not induce UDS by itself (21). More
,B-dienestrol is formed in cells treated in the
presence of rat liver PMS.

P-Dienestrol can potentially form a phe-
noxyradical intermediate via a peroxidase-
mediated pathway, and this intermediate
may bind to DNA and induce UDS.

DES exhibits positive activity in
other cell transformation systems as well.
Fitzgerald et al. (34) demonstrated in the
BALB/c 3T3 cell transformation system
that DES displays transforming activity
with no measurable induction of gene
mutation at the Na+/K+-ATPase locus.
Transformation frequency of the cells is
enhanced by DES when treated with DES
in the presence of rat hepatocytes that are
freshly prepared. Rinehart et al. (35)
showed that chronic exposure to DES of
human endometrial stromal cells with a
temperature-sensitive SV40 large T antigen
induces a dose-dependent increase in the
immortalization of cells, which is deter-
mined by the ability to grow at the restric-
tive temperature. Moreover, the increase in
cell proliferation at the restrictive tempera-
ture is concurrent with alterations in p53 in
the cells. As immortalization is an impor-
tant step in the carcinogenesis process, and
immortalization of human cells may be
analogous to initiation of rodent cells, DES
could act as an initiator in the carcinogenic
process ofhuman cells (35).
We have studied the ability of estradiol

(E2) and different metabolites of E2 to
induce cell transformation. E2 metabolism
is similar in rats and in humans. E2 is

initially oxidized to estrone (E1), followed
by hydroxylations at positions C-2 and 16ac
that are mutually exclusive (5). The prin-
cipal products of 16a-hydroxylation are
16ax-hydroxyestrone (16ax-OH E1) and
estriol (E3). 2-Hydroxylation yields the cat-
echol estrogen 2-hydroxyestrone (2-OH
E1) (36). P450 multisubstrate monooxyge-
nases catalyze the oxidative metabolism of
estrogens, and estrogen 2- and 16a-hydrox-
ylases play a major role in the metabolism
of these estrogens (37). E2 is also converted
to catechol estrogen, postulated to arise
from E2 via the 4-hydroxylation pathway,
which is similar to the 2-hydroxylation
pathway (38). The catechol estrogens e.g.,
2-OH E1, 2-hydroxyestradiol (2-OH E2),
and 4-hydroxyestradiol (4-OH E2) seem to
be further oxidized to quinones that cova-
lently bind to DNA (39).
We examined the transforming activity

of these estrogens using the SHE cell assay
system. Treatment ofSHE cells with E1, E2,
16a-OH E1, 2-OH E1, or 2-OH E2 induces
morphological transformation of cells in a
dose-related manner. Exposure to E3 fails to
elicit SHE cell transformation (unpublished
data). Higher transforming activity is
observed in cells treated with 166a-OH E1
or 2-OH E1, when compared to other estro-
gens. 16a-OH E1 could be capable of
inducing UDS and anchorage-independent
growth in mouse mammary epithelial cells
(40). Additionally, 16a-OH E1 binds cova-
lently not only to nucleohistones in vitro
(41), but also to nudear regulatory proteins,
specifically the estrogen receptor, in estrogen
target cells (42). This may disturb normal
gene functions, possibly participating in the
transformation process (41). Elevated levels
of 16x-hydroxylation are detected in breast
tissue from women with breast cancer (43)
and in mouse strains with a high incidence
of mammary tumor formation (44). How-
ever, the high frequency of morphological
transformation of cells induced by 2-OH E1
could be due to genotoxicity of 2-OH E1 or
its metabolites converted in SHE cells,
because treatment with 2-OH E1 induces
chromosome aberrations in SHE cells
(unpublished data). E2 induces morphologi-
cal transformation of BALB/c 3T3 cells, a
mouse fibroblast cell line having 2- and
4-hydroxylase activity. The transformation
efficiency does not increase with increasing
hormonal potency of the estrogens exam-
ined, but correlates well with the relative
rates of catechol estrogen formation (45).

Tamoxifen, toremifene, and ICI
164,384 are positive in the SHE cell trans-
formation assay as well (46). Tamoxifen, a

triphenylethylene nonsteroidal antiestrogen,
is a structural analogue of DES and exerts
mixed or partial agonist/antagonist effects
with estrogens. Toremifene is a new tri-
phenylethylene nonsteroidal antiestrogen; its
molecular structure closely resembles that of
tamoxifen. Toremifene differs from tamox-
ifen by the presence of a chlorine atom at
the end of the ethyl side chain. ICI 164,384
is the 7a-alkylamide analogue of E2, and a
new steroidal antiestrogen with complete
pure antagonistic properties (47). The
results confirm that hormonal effects are not
implicated in cell transformation. Rather, a
role for estrogen metabolism seems to be
important in estrogen-induced cell transfor-
mation or carcinogenesis. No reports on the
cell transforming activity and carcinogenic-
ity of other estrogen blockers, e.g., EM 800
and ICI 182,780, are available.

Mechanisms of Cell
Transformation by
Estrogens
Aneuploidy Induction
DES induces numerical chromosome
changes (aneuploidy) in SHE cells (20).
The aneuploidy induction occurs at non-
toxic doses and correlates with the ability to
induce cell transformation with parallel
dose-response curves. Treatment of syn-
chronized cultures with DES results in a
cell cycle-dependent induction of aneuploid
cells that parallels the induction of cell
transformation, with the greatest level
observed following treatment during mito-
sis. Parallel dose-response curves for cell
transformation and aneuploidy induction
by DES are observed when the synchro-
nized cultures are treated during the mitotic
phase of the cell cycle (20). A nonrandom
chromosome gain accompanies DES-
induced immortalization and tumorigenic
conversion ofSHE cells (48). These suggest
that DES-induced aneuploidy is mechanis-
tically involved in estrogen-induced cell
transformation and possibly in carcinogene-
sis (7,22). E2 also induces a dose-dependent
increase in the frequencies of aneuploid
cells, corresponding to the inducibility of
morphological transformation (23).

E2 and DES bind and disrupt polymer-
ization of microtubules in cultured mam-
malian cells (49-53). DES inhibits in vitro
assembly of microtubules purified from
porcine brain (54), and induces a decrease
in the number of spindles and cytoplasmic
microtubule fibers in SHE cells (49) and
Chinese hamster V79 cells (50). E2 has no
ability to interact with microtubules or
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microtubule protein in vitro (54), but the
quinone metabolites of both E2 and DES
bind covalendy to the C-terminal regions of
P-tubulin, which are important in regula-
tion of microtubule assembly and disruption
(55). E2 exhibits microtubule-disrupting
activity both in estrogen receptor-positive
and receptor-negative human breast cancer
cell lines (51). The disrupting activity is
demonstrated also in V79 cells (51,52),
which have little capability of metabolizing
xenobiotics (56). These findings suggest
that E2 itself induces microtubule disruption
independent of its binding to estrogen
receptor. Therefore, E2-induced micro-
tubule disruption in living cells seems to be
due to a more complex involvement with
factors regulating microtubule assembly,
such as Ca2+, microtubule accessory pro-
teins, the calcium regulatory protein
calmodulin, adenylate cyclase, or the protein
kinases activated by the cyclic nucleotides
(57-59). Microtubule-disrupting activities
of E2 and its metabolites in living cells vary
with their chemical structures. Aizu-Yokota
et al. (53) have examined the activity in
V79 cells by the indirect immunofluores-
cence method using anti-,B-tubulin antibody
and determined the rank-order of the
potencies as follows: E2 2-OH E2 > 4-OH
E2 > 16a-OH E1 = 2-OH E1 > El = E3.
16a-OH E1 and 2-OH E1 exhibit activities
about one-fourth to one-fifth that of E2.
The disruptive activities of E1 and E3 are
negligible when compared to that of E2.
Functional or conformational change in
microtubule organization could lead to
chromosomal nondisjunction, aneuploidy
induction, and cell transformation.

Tamoxifen, toremifene, and ICI 164,384
induce aneuploidy in SHE cells with no
increases in the frequency of chromosome
aberrations (46). Tamoxifen binds to cal-
modulin and acts as a calmodulin antagonist
(60). Sargent et al. (61) reported that both
unipolar spindles and incompletely elon-
gated spindles were observed in cultured
hepatocytes from rats treated with tamoxi-
fen, as well as in calmodulin-defective
mutants in yeast (62). Some calmodulin is
associated with the spindle pole body and
plays an important part in the proper func-
tion of mitotic spindles (62). Tamoxifen-
induced aneuploidy may be due to the
inhibitory effect ofcalmodulin by tamoxifen.

Formation ofMicronudei
Both DES and E2 induce the formation of
micronuclei (MN) in cultured mammalian
cells (63-67). MN enclose acentric chro-
mosome fragments or whole chromosomes

that do not become incorporated into the
main nuclei after cell division. MN are
believed to arise from acentric chromoso-
mal fragments or from chromosomes lag-
ging at anaphase resulting from mitotic
disturbance (68). MN packing acentric
chromosomal fragments appear to be
induced by clastogens, while MN enclosing
whole chromosomes are induced by agents
that affect the mitotic apparatus. The
majority of DES-induced and E2-induced
MN contains whole chromosomes, which
are demonstrated both with antikineto-
chore antibodies and with the centromere-
specific DNA probe (67). DES may need
peroxidative activation to produce metabo-
lite(s) that induce MN, because both DES
oxidation and MN induction by DES are
markedly decreased by indomethacin, an
inhibitor of prostaglandin H synthase
activity (66,69). E2 may require metabolic
activation for MN induction as well, as
indicated by the following: a) 2-OH E2, an
E2 metabolite converted by 2-hydroxylase,
binds covalently to tubulin in vitro with or
without peroxidative activation system
(55), but E2 itself does not; and b) E2
exhibits comparable MN induction to
DES in SHE cells (64), which have both
oxidative (28) and peroxidative activities
(29). Schnitzler et al. (67) have shown that
the mechanism of DES-induced MN is
different from that of E2-induced MN
using SHE cells and ovine seminal cells.
DES-induced MN can arise through chro-
mosome nondisjunction due to spindle dis-
ruption, whereas E2 at the concentrations
used in the MN assay exerts no detectable
effect on the formation of the mitotic spin-
dle, but causes chromosome dislocation,
probably due to a functional loss of the
mitotic apparatus.

Genotoxicity
Although DES is not genotoxic in many
assays, in certain studies DES has been
found to induce UDS (21,70-72), sister
chromatid exchanges (73-75), chromo-
some aberrations (76,77) and gene muta-
tions (33,78). The positive studies ofDNA
damage by DES use either cultured mam-
malian cells with exogenous metabolic acti-
vation or cells with possible endogenous
activation capacity for DES. Therefore, we
directly compared the cell transforming
activity and genotoxicity of DES in the
same cells with and without exogenous
metabolic activation. When SHE cells are
treated in the absence of a rat liver PMS-
metabolic activation system, DES fails to
induce DNA damage in SHE cells at doses

that induce cell transformation (7,19,20,
21,33). However, treatment of SHE cells
with DES in the presence of an exogenous
metabolic activation system enhances the
frequency of morphological transformation
of the cells. Furthermore, this treatment
elicits UDS and gene mutations in the cells
at the Na+/K+-ATPase locus (33). Thus,
we have proposed two potential mecha-
nisms for estrogen-induced cell transforma-
tion; in one the target of the estrogen is not
DNA but rather microtubule disruption
and the other is associated with DNA dam-
age (33). Both pathways may involve
active genotoxic metabolites of DES.

DNAAdduct Formation
Cellular DNA damage induced by chemicals
can be examined by detection of DNA
adduct formation through a covalent mod-
ification of DNA. Liehr et al. (79) demon-
strated the presence of covalent DNA
adducts in premalignant kidneys of Syrian
hamsters treated chronically with DES
using a sensitive 32P-postlabeling assay.
Because structurally diverse estrogens
induced identical DNA adducts, they con-
cluded that estrogens induce binding of the
same unknown endogenous compounds to
target tissue DNA. They also reported that
a distinct pattern of DNA adducts was
detected in the liver, kidney, uterus, and
testes of Syrian hamsters following treat-
ment with DES (80), and the major
adducts found were similar to those pro-
duced by reaction of diethylstilbestrol-
4',4"-quinone with DNA (39). This
suggests that DES acts as a genotoxic car-
cinogen via its metabolic activation to the
electrophilic 4',4"-quinone (39). There is
another possible mechanism by which DES
may cause DNA damage. Microsome-
mediated redox cycling between DES or its
catechol and the corresponding quinones
generates superoxide radicals (02--) and
hydroxyl radicals (OH) (81-84). Free
radicals generated by the redox cycling of
DES also oxidize 2'-deoxyguanosine to
8-hydroxy-2'-deoxyguanosine (8-OH-dG)
in vitro (85) as well as in vivo (86). Small
DNA adducts such as 8-OH-dG could be
a causal basis for DES-induced DNA dam-
age, which is detected as gene mutations
and UDS in cultured SHE cells (21,33).

Chronic exposure of Syrian hamsters to
E2 for 6 months induces renal tumors (6),
and the treatment causes covalent DNA
alterations (adduct formation) in the kid-
ney (82). E2 is metabolically oxidized to
catechol estrogens (2-OH E2 and 4-OH
E2), which are postulated to be capable of
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redox cycling (84). Free radical-mediated
DNA damage might be involved in E2
carcinogenesis because 8-OH-dG levels
increase in kidney DNA of male Syrian
hamsters in chronic treatment with E2 (87).

To siudy the possible involvement of
DNA damage in cell transformation
induced by estrogens, we have examined
whether DNA adduct formation is elicited
in SHE cells treated with estrogens and
their metabolites by means of the nudease
P1 enhancement version of 32P-postlabel-
ing (30). DNA adduct formation is
detected in SHE cells treated with DES,
but not in SHE cells treated with trans,
trans-dienestrol (a-dienestrol) or ,B-diene-
strol. Similarly, morphological transforma-
tion of SHE cells is induced by DES, but
not by a- or 0-dienestrol. Treatment of
SHE cells with DES in the presence of
exogenous metabolic activation with rat
liver PMS enhances morphological trans-
formation in a dose-dependent manner.
Exposure of SHE cells to DES under the
same conditions with exogenous metabolic
activation induces somatic mutations and
UDS. However, following this treatment,
DNA adduct formation is not detected in
SHE cells. It is possible that DNA adducts
may be formed but not detected because
of the instability of the adducts (39).
However, this is unlikely because DNA

adduct formation is not detected even
when SHE cells are treated with DES for
30 min (30). Exposure of SHE cells to E2
and its metabolites, 2-OH E2 and 4-OH
E2, for 24 hr leads to covalent DNA
adduct formation, corresponding to the
induction of cell transformation (30). The
results indicate that estrogens induce DNA
adduct formation in cultured SHE cells,
but the induction may not be the only
mechanism relevant to the initiation of cell
transformation. Because DES and E2 result
in DNA adduct formation and aneuploidy
in SHE cells, the possibility exists that
DNA adduct formation is involved in
nondisjunction leading to aneuploidy.
Alternatively, DNA adduct formation may
only correlate with other adducts in differ-
ent critical macromolecules, such as tubu-
lin (55,88,89), and may not be causally
involved in either morphological transfor-
mation or aneuploidy induction.

E2 is metabolically oxidized to catechol
estrogens that are also postulated to be
capable of redox cycling, which would gen-
erate free radicals by redox cycling between
2- or 4-OH E2 and their corresponding
quinones (82). Roy et al. (86) showed that
8-OH-dG levels increase in kidney and
liver DNAs of male Syrian hamsters
by chronic treatment with DES but not
with E2. This suggests the involvement of

different mechanisms in cell transformation
induced by DES and E2.

In summary, estrogens (DES and E2)
and their metabolites induce morphological
transformation of SHE cells in a dose-
related manner. DES and E2 do not cause
significant increases in the chromosome
aberrations in SHE cells, but induce numer-
ical chromosome changes in the near
diploid range, corresponding to the trans-
forming activity. In addition, these estro-
gens result in DNA adduct formation in
SHE cells. It has not been dear which cyto-
genetic endpoints are more correlated on a
causal basis with the estrogen-induced cell
transformation. Moreover, other effects by
estrogens, e.g., covalent binding to proteins
(55,88,89) and generation of reactive oxy-
gen species (39,81,83,84,86) could partici-
pate into inducing transformed cells.
Furthermore, we cannot rule out the possi-
bility that multiple effects of estrogens act
together to cause genetic alterations leading
to cell transformation. Our studies do, how-
ever, suggest that estrogens have the ability
to directly transform cells by multiple muta-
genic mechanisms unrelated to estrogenic-
ity. These estrogen-induced changes, in
conjunction with epigenetic changes medi-
ated through the estrogen receptor, may
contribute to hormonal carcinogenesis.

REFERENCES

1. Pike M, Spicer DV. Endogenous estrogen and progesterone as
the major determinants of reast cancer risk: prospects for con-
trol by "natural" and "technological" means. In: Hormonal
Carcinogenesis (Li JJ, Nandi S, Li SA, eds). New York:
Springer-Verlag, 199 1;209-216.

2. Brinton LA, Hoover R, Fraumeni JF Jr. Menopausal estrogen
and breast cancer risk. An expanded case-control study. Br J
Cancer 54:825-832 (1986).

3. Huff J, Boyd J, Barrett JC. Cellular and Molecular
Mechanisms of Hormone Carcinogenesis: Environmental
Influences. New York:Wiley-Liss, 1996.

4. IARC. IARC Monographs on the Evaluation of the
Carcinogenic Risk of Chemicals to Humans, Sex Hormones
(II). Vol 21. Lyon:International Agency for Research on
Cancer, 1970;139-362.

5. Kirkman H. Estrogen-induced tumors of the kidney. III:
Growth characteristics in the Syrian hamster. J Natl Cancer
Inst Monogr 1:1-58 (1959).

6. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the
vagina: association of maternal stilbestrol therapy with tumor
appearance in young women. N Engl J Med 284:878-881
(1979).

7. Barrett JC, Hesterberg TW, Oshimura M, Tsutsui T. Role of
chemically induced mutagenic events in neoplastic transforma-
tion of Syrian hamster embryo cells. In: Carcinogenesis: A
Comprehensive Survey. Vol 9: Mammalian Cell Transformation
Assays. New York:Raven Press, 1985; 123-127.

8. Grubbs CJ, Peckham JC, McDonougt KD. Effects of ovarian
hormones on the induction of 1-methyl-nitrosourea-induced
mammary cancer. Carcinogenesis 4:495-497 (1983).

9. Noronha RFX, Goodal CM. The effects of estrogen on single
dose dimethylnitrosamine carcinogenesis in male inbred
Crl/CDF rats. Carcinogenesis 5:1003-1007 (1984).

10. Yager JD Jr, Yager R. Oral contraceptive steroids as promoters
of hepatocarcinogenesis in female Sprague-Dawley rats. Cancer
Res 40:3680-3685 (1980).

11. Yager JD, Campbell HA, Longneck DS, Roebuck BD, Benoi
MC. Enhancement of hepatocarcinogenesis in female rats by
ethynyl estradiol and mestranol but not estradiol. Cancer Res
44:3862-3869 (1984).

12. Sheehan DM, Frederick CB, Branham S, Heath JE. Evidence
for estradiol promotion of neoplastic lesions in the rat vagina
after initiation with N-methyl-N-nitrosourea. Carcinogenesis
3:957-959 (1982).

13. Waldron J. Interpretation of epidemiological studies of human
cancer in relation to multistep models of carcinogenesis. In:
Mechanisms of Environmental Carcinogenesis. Vol II:
Mechanisms of Multistep Carcinogenesis (Barrett JC, ed). Boca
Raton, FL:CRC Press, 1987;21-58.

14. Moolgavkar SH, Knudson AG. Mutation and cancer: a model for
human carcinogenesis. J NatI Cancer Inst 66:1037-1052 (1981).

15. Satyaswaroop PG, Zaino RJ, Mortel R. Human endometrial
adenocarcinoma transplanted into nude mice: growth regula-
tion by estradiol. Science 219:58-60 (1983).

622 Environmental Health Perspectives * Vol 105, Supplement 3 * April 1997



GENOTOXIC MECHANISMS OF ESTROGENS

16. Barrett JC, Huff J. Cellular and molecular mechanisms of
chemically induced carcinogenesis. Renal Failure 13:211-225
(1991).

17. Li JJ, Li SA, Oberley T. Estrogen carcinogenicity: hormonal
morphologic and chemical interactions. In: Chemical
Carcinogens. Activation Mechanisms, Structural and Electronic
Factors, and Reactivity (Politzer P, Martin FJ Jr, eds). New
York:Elsevier, 1988;312-321.

18. Newbold RR, Bullock BC, McLachlan JA. Uterine adenocarci-
noma in mice following developmental treatment with estro-
gens: a model for hormonal carcinogenesis. Cancer Res
50:7677-7681 (1990).

19. Barrett JC, Wong A, McLachlan JA. Diethylstilbestrol induces
neoplastic transformation without measurable gene mutation at
two loci. Science 212:1402-1404 (1981).

20. Tsutsui T, Maizumi H, McLachlan JA, Barrett JC. Aneuploidy
induction and cell transformation by diethylstilbestrol: a possi-
ble chromosomal mechanism in carcinogenesis. Cancer Res
43:3814-3821 (1983).

21. Tsutsui T, Degen GH, Schiffmann D, Wong A, Maizumi H,
McLachlan JA, Barrett JC. Dependence on exogenous meta-
bolic activation for induction ofunscheduled DNA synthesis in
Syrian hamster embryo cells by diethylstilbestrol and related
compounds. Cancer Res 44:184-189 (1984).

22. Barrett JC, Oshimura M, Tsutsui T, Tanaka N. Role of aneu-
ploidy in early and late stages of neoplastic progression of
Syrian hamster embryo cells in culture. In: Aneuploidy:
Etiology and Mechanisms (Dellarco VL, Voytek PE,
Hollaender A, eds). New York:Plenum Press, 1985;523-538.

23. Tsutsui T, Suzuki N, Fukuda S, Sato M, Maizumi H,
McLachlan JA, Barrett JC. 17[B-Estradiol-induced cell transfor-
mation and aneuploidy of Syrian hamster embryo cells in cul-
ture. Carcinogenesis 8:1715-1719 (1987).

24. Barrett JC, Tsutsui T. Mechanisms of estrogen-associated car-
cinogenesis. In: Cellular and Molecular Mechanisms of
Hormonal Carcinogenesis: Environmental Influences (Huff J,
Boyd J, Barrett JC, eds). New York:Wiley-Liss, 1996; 105-112.

25. McLachlan JA, Wong A, Degen GH, Barrett JC.
Morphological and neoplastic transformation of Syrian hamster
embryo cells by diethylstilbestrol and its analogs. Cancer Res
42:3040-3045 (1982).

26. Ernst H, Riebe M, Mohr U. Undifferentiated sarcomas
induced in Syrian hamsters by subcutaneous injection of
diethylstilbestrol. Cancer Lett 31:181-186 (1986).

27. Korach KS, McLachlan JA. The role of the estrogen receptor in
diethylstilbestrol toxicity. Arch Toxicol 58(Suppl 8):33-42
(1985).

28. Pienta RJ. Transformation of Syrian hamster embryo cells by
diverse chemicals and correlation with their reported carcino-
genic and mutagenic activities. In: Chemical Mutagens,
Principles and Methods for Their Detection, Vol 6 (deSerres
FJ, Hollaender A, eds). New York/London:Plenum Press,
1980;175-202.

29. Degen GH, Wong A, Eling TE, Barrett JC, McLachlan JA.
Involvement of prostaglanrin synthetase in the peroxidative
metabolism of diethyfstilbestrol in Syrian hamster embryo
fibroblast cell cultures. Cancer Res 43:992-996 (1983).

30. Hayashi N, Hasegawa K, Barrett JC, Tsutsui T. Estrogen-
induced cell transformation and DNA adduct formation in cul-
tured Syrian hamster embryo cells. Mol Carcinog 16:149-156
(1996).

31. Metzler M, McLachlan JA. Peroxidase-mediated oxidation, a
possible pathway for metabolic activation of diethylstilbestrol.
Biochem Biophys Res Commun 85:874-884 (1978).

32. Maydl R, Newbold RR, Metzler M, McLachlan JA. Organ cul-
tures of the fetal mouse genital tract metabolize diethylstilbe-
strol (DES). Proc Am Assoc Cancer Res 22:104 (1981).

33. Tsutsui T, Suzuki N, Maizumi H, McLachlan JA, Barrett JC.
Alteration in diethylstilbestrol-induced mutagenicity and cell
transformation y exogenous metabo ic activation.
Carcinogenesis 7:1415-1418 (1986).

34. Fitzgerald DJ, Piccoli C, Yamasaki H. Detection of non-geno-
toxic carcinogens in the BALB/c 3T3 cell transformation/muta-
tion assay system. Mutagenesis 4:286-291 (1989).

35. Rinehart CA, Xu L-H, Le LV, Kaufman DG. Diethylstilbestrol-
induced immortalization of human endometrial cells: alterations
in p53 and estrogen receptor. Mol Carcinog 15:115-123 (1996).

36. Fishman J, Hellman L, Zumoff B, Cassouto J. Pathway and
stereochemistry of the formation of estriols in man.
Biochemistry 5:1789-1794 (1996).

37. Fishman J. Aromatic hydroxylation of estrogens. Annu Rev
Physiol 45:61-72 (1983).

38. Li SA, Klicka JK, Li JJ. Estrogen 2- and 4-hydroxylase activity,
catechol estrogen formation, and implications for estrogen car-
cinogenesis in the hamster kidney. Cancer Res 45:181-185
(1985).

39. Liehr JG. Genotoxic effects of estrogens. Mutat Res
238:269-276 (1990).

40. Telang NT, Suto A, Wong GY, Osborne MP, Bradlow HL.
Induction by estrogen metabolite 166a-hydroxyestrone of geno-
toxic damage and aberrant proliferation in mouse mammary
epithelial cells. J Nad Cancer Inst 84:634-638 (1992).

41. Yu SC, Fishman J. Interaction of histones with estrogens.
Covalent adduct formation with 16a-hydroxyestrone.
Biochemistry 24:8017-8021 (1985).

42. Swaneck GE, Fishman J. Covalent binding of the endogenous
estrogen 16a-hydroxyestron to estradiol receptor in human
breast cancer cells: characterization and intranuclear localiza-
tion. Proc Natl Acad Sci USA 85:7831-7835 (1988).

43. Schneider J, Kinne D, Fracchia A, Pierce V, Anderson KE,
Bradlow HL, Fishman J. Abnormal oxidative metabolism of
estradiol in women with breast cancer. Proc Natl Acad Sci USA
79:3047-3051 (1982).

44. Telang NT, Bradlow HL, Kurihara H, Osborne NP. In vitro
biotransformation of estradiol by explant cultures of murine
mammary tissues. Breast Cancer Res Treat 13:173-181 (1989).

45. Liehr JG, Purdy RH, Baran JS, Nutting EF, Colton F,
Randerath E, Randerath K. Correlation of aromatic hydroxyla-
tion of 11 5-substituted estrogens with morphological transfor-
mation in vitro but not with in vivo tumor induction by these
hormones. Cancer Res 47:2583-2588 (1987).

46. Tsutsui T, Taguchi S, Tanaka Y, Barrett JC. 17(-estradiol,
diethylstilbestrol, tamoxifen, toremifene and ICI 164,384
induce morphological transformation and aneuploidy in cul-
tured Syrian hamster embryo cells. Intl J Cancer 70:188-193
(1997).

47. Wakeling AE, Bowel J. Biology and model of action of pure
antiestrogens. J Steroid Biochem 30:141-147 (1988).

48. Ozawa N, Oshimura M, McLachlan JA, Barrett JC.
Nonrandom karyotypic changes in immortal and tumorigenic
Syrian hamster cells induced by diethylstilbestrol. Cancer
Genet Cytogenet 38:271-282 (1989).

49. Tucker RW, Barrett JC. Decreased numbers of spindle and
cytoplasmic microtubules in hamster embryo cells treated with
a carcinogen, diethylstilbestrol. Cancer Res 46:2088-2095
(1986).

50. Sakakibara Y, Saito I, Ichinoseki K, Oda T, Kaneko M, Saito
H, Kodama M, Sato Y. Effects of diethylstilbestrol and its
methyl ethers on aneuploidy induction and microtubule distri-
bution in Chinese hamster V79 cells. Mutat Res 263:269-276
(1991).

51. Aizu-Yokota E, Ichinoseki K, Sato Y. Microtubule disruption
induced by estradiol in estrogen receptor-positive and -negative
human breast cancer cell lines. Carcinogenesis 15:1875-1879
(1994).

52. Sato Y, Sakakibara Y, Oda T, Aizu-Yokota E, Ichinoseki K.
Effect of estradiol and ethynylestradiol on microtubule distrib-
ution in Chinese hamster V79 cells. Chem Pharm Bull
40:182-184 (1992).

53. Aizu-Yokota E, Susaki A, Sato Y. Natural estrogens induce
modulation of microtubules in Chinese hamster V79 cells in
culture. Cancer Res 55:1863-1868 (1995).

Environmental Health Perspectives * Vol 105, Supplement 3 * April 1997 623



TSUTSUI AND BARRETT

54. Sato Y, Murai T, Tsumuraya M, Saito H, Kodama M.
Disruptive effect of diethylstilbestrol on microtubules. Jpn J
Cancer Res (Gann) 75:1046-1048 (1984).

55. Epe B, Heglar J, Metzler M. Site-specific covalent binding of
stilbene-type and steroidal estrogens to tubulin following meta-
bolic activation in vitro. Carcinogenesis 8:1271-1275 (1987).

56. Bradley MO, Bhuyan B, Francis MC, Langenbach R, Peterson
A, Huberman E. Mutagenesis by chemical agent in V79
Chinese hamster cells: a review and analysis of the literature.
Mutat Res 87:81-142 (1981).

57. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD,
eds. Molecular Biology of the Cell. New York/London:Garland
Publishing, 1993.

58. Hsie AW, Puck TT. Morphological transformation of Chinese
hamster cells by dibutyryl adenosine cyclic 3':5'-monophos-
phate and testosterone. Proc Natl Acad Sci USA 68:358-361
(1971).

59. Browne CL, Lockwood AH, Su JL, Beavo JA, Sterner AL.
Immunofluorescent localization of cyclic nucleotide-dependent
protein kinases on the mitotic apparatus of cultured cel[s. J Cell
Biol 87:336-345 (1980).

60. Edwards K, Laughton C, Neidle S. A molecular modeling
study of the interactions between the antiestrogen drug tamox-
ifen and several derivatives, and the calcium-binding protein
calmodulin. J Med Chem 35:2753-2761 (1992).

61. Sargent LM, Dragen YP, Bahnub N, Wiley JE, Sattler CA,
Schroeder P, Sattler GL, Jordan VC, Pitot HC. Tamoxifen
induces hepatic aneuploidy and mitotic spindle disruption after
a single in vivo administration to female Sprague-Dawley rats.
Cancer Res 54:3357-3360 (1994).

62. Geiser JR, Sundberg HA, Chang BH, Muller EGD, Davis TN.
The essential mitotic target of calmodulin is the 110-kilodalton
component of the spinT pole body in Saccharomyces cerevisiae.
Mol Cell Biol 13:7913-7924 (1993).

63. Wheeler WJ, Hsu TC, Tousson A, Brinkley BR. Mitotic inhi-
bition and chromosome displacement induced by estradiol in
Chinese hamster cells. Cell Motil Cytoskel 7:235-247 (1987).

64. Schmuck G, Lieb G, Wild D, Schiffmann D, Henschler D.
Characterization of an in vitro micronucleus assay with Syrian
hamster embryo fibroblasts. Mutat Res 203:397-404 (1988).

65. Schiffmann D, DeBoni U. Dislocation of chromatin elements
in prophase induced by diethylstilbestrol: a novel mechanism
by which micronuclei can arise. Mutat Res 246:113-122
(1991).

66. Foth J, Schnitzler R, Jager M, Koob M, Metzler M, Degen
GH. Characterization of sheep seminal vesicle cells-a new tool
for studying genotoxic effects in vitro. Toxicol in Vitro
6:219-225 (1992).

67. Schnitzler R, Foth J, Degen GH, Metzler M. Induction of
micronuclei by stilbene-type and steroidal estrogens in Syrian
hamster embryo and ovine seminal vesicle cells in vitro. Mutat
Res 311:85-93 (1994).

68. Bahari IB, Noor FM, Daud MM. Micronucleated erythrocytes
as an assay to assess actions by physical and chemical genotoxic
agents in Clarias gariepinus. Mutat Res 313:1-5 (1994).

69. Foth J, Degen GH. Prostaglandin H synthase dependent
metabolism of diethylstilbestrol in ram seminal vesicle cell cul-
tures. Arch Toxicol 65:344-347 (1991).

70. Martin CN, McDermid AC, Garner RC. Testing of known
carcinogens and noncarcinogens for their ability to induce
unscheduled DNA synthesis in HeLa cells. Cancer Res
38:2621-2627 (1978)

71. Martin CN, McDermid AC. Testing of 42 coded compounds
for their ability to induce unscheduled DNA repair synthesis in
the HeLa cells. In: Evaluation of Short-term Tests for

Carcinogens (deSerres FJ, Ashby J, eds). New York:
Elsevier/North Holland, 1982;533-537.

72. Robinson DE, Mitchell AD. Unscheduled DNA synthesis
response to human fibroblast WI-38 cells to 20 coded chemi-
cals. In: Evaluation of Short-term Tests for Carcinogens
(deSerres FJ, Ashby J, eds). New York:Elsevier/North Hol2and,
1982;517-527.

73. Rudiger HW, Haenish F, Metzler M, Oesch F, Glatt HR.
Metabolites of diethylstilbestrol induce sister chromatid
exchange in human cultured fibroblasts. Nature 281:392-394
(1979).

74. Hill A, Wolff S. Increased induction of sister chromatid
exchange by diethylstilbestrol in lymphocytes from pregnant
and premenopausal women. Cancer Res 42:893-896 (1982).

75. Buenaventura SK, Jacobson-Kram D, Dearfield KL, Williams
JR. Induction of sister chromatid exchange by diethylstilbestrol
in metabolically competent hepatoma cell lines but not in
fibroblasts. Cancer Res 44:3851-3855 (1984).

76. Bishun N, Forster S, Valera N, Williams DS. The clastogenic
effects of diethylstilbestrol on ascitic tumor cell in vivo.
Microbios Lett 13:27-31 (1980).

77. Ivett JL, Tice RR. Diethylstilbestrol-diphosphate induces chro-
mosomal aberrations but not sister chromatid exchanges in
murine bone marrow cells in vivo. Environ Mutagen
3:445-452 (1981).

78. Clive D, Johnson KO, Spector JFS, Batson AG, Brown
MMM. Validation and characterization of the L5173Y/TK+-
mouse lymphoma mutagen assay system. Mutat Res 59:61-108
(1979).

79. Liehr JG, Avitts TA, Randerath E, Randerath K. Estrogen-
induced endogenous DNA adduction: possible mechanism of
hormonal cancer. Proc Natl Acad Sci USA 83:5301-5305
(1986).

80. Gladek A, Liehr JG. Mechanism of genotoxicity of diethyl-
stilbestrol in vivo. J Biol Chem 264:16847-16852 (1989).

81. Epe B, Schiffmann D, Metzler M. Possible role of oxygen radi-
cals in cell transformation by diethylstilbestrol and related com-
pounds. Carcinogenesis 7:1329-1334 (1986).

82. Lieher JG, Ulubelen AA, Strobel HW. Cytochrome P-450-
mediated redox cycling of estrogens. J Biol Chem
261:16865-16870 (1986).

83. Roy D, Liehr JG. Temporary decrease in renal quinone reduc-
tase activity induced by chronic administration of estradiol to
male Syrian hamsters: increased superoxide formation by redox
cycing of estrogen. J Biol Chem 263:3646-3651 (1988).

84. Liehr JG, Roy D. Free radical generation by redox cycling of
estrogens. Free Radic Biol Med 8:415-423 (1990).

85. Roseier JA, Van Peteghem CH. Peroxidative in vitro metabo-
lism of diethylstilbestrol induces formation of 8-hydroxy-2'-
deoxyguanosine. Carcinogenesis 10:405-406 (1989).

86. Roy D, Froyd RA, Liehr JG. Elevated 8-hydroxydeoxy- guano-
sine levels in DNA of diethylstilbestrol-treated Syrian hamsters:
covalent DNA damage by free radicals generated by redox
cycling of diethylstilbestrol. Cancer Res 51:3882-3885 (1991).

87. Han X, Liehr JG. 8-Hydroxylation of guanine bases in kidney
and liver DNA of hamsters treated with estradiol: role of free
radicals in estrogen-induced carcinogenesis. Cancer Res
54:5515-5517 (1994).

88. Haaf H, Metzler M. Covalent binding of diethylstilbestrol to
microsomal protein in vitro correlates with the organotropism
of its carcinogenicity. Carcinogenesis 6:659-660 (1985).

89. Epe B, Harttig U, Stopper H, Metzler M. Covalent binding of
reactive estrogen meta olites to microtubular protein as a possi-
ble mechanism of aneuploidy induction and neoplastic cell
transformation. Environ Health Perspect 88:123-127 (1990).

624 Environmental Health Perspectives * Vol 105, Supplement 3 * April 1997


